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1 Sobolev Inequalities

1.1 The Gagliardo-Nirenberg-Sobolev inequality

We have been discussing Sobolev inequalities. Last time, we stated the following theorem.

Theorem 1.1 (Gagliardo-Nirenberg-Sobolev inequality). Let d > 2. For u € C°(RY), we
have
||u||L%(Rd) < [ Dull g1 (ray-

To approach this, we proved a lemma:

Lemma 1.1 (Loomis-Whitney inequality). Let d > 2. For j = 1,...,d, suppose f; =
fi(xt, ...z, . 2%). Then
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This answers the geometric question of controlling the measure of a set in R? using the
measure of its projections, by applying the lemma to f; = 1, (). Now let’s prove the
GNS inequality.

Proof. Observe that if we take a point z € R?, then we can write

"
u(x) :/ 8xju(931,...,$J_17y,x3+1,...,$d)dy,
—00

using the fundamental theorem of calculus. Here, we use the compact support assumption
to be sure this converges. This means that
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We can upper bound this by replacing 7 by oo and d,; by D:
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This means that we have
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which we can write as

Using the Loomis-Whitney inequality,
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Observe that |f;|*! = [ |Du(z!,...,27,...,2%)|d2? = [|Du|dz, so

_d_
< [ Dullz:"

Remark 1.1. GNS is the functional counterpart of the isoperimetric inequality. Given a
function, we can make a layer cake decomposition in the y axis and apply the isoperimetric
inequality to each part. This is useful for functions on manifolds where we have some

geometric information.

1.2 Sobolev inequalities for LP-based spaces with p < d

Now we will upgrade this to the case where we have other LP spaces on the right hand

side.



Theorem 1.2 (Sobolev inequalities for LP-based spaces). Let d > 2, and assume that
1< p<d. Foruée C®(RY), we have

lullza(RY) < Cl|Dull 1o g,

where q = f%;.

What is ¢7 We do dimensional analysis to figure out the exponent. On the left hand

side, we have [2]%9, and on the right hand side, we have [z]~'*%?. If we solve for ¢, we

get g = ddfpp. This also gives us the restriction that p < d.

Proof. Take v = |u|9, where § = %. Its derivative is |Dv| = q|u|?~!|Dv|. This can be

justified using approximation: approximate |z| by (¢2 + 22)'/?v and let £ — 0. Then

/|u\‘7d$:/|v|ddl dz
a-1
d
< </\Dv]dx> .

It is at this point that we need the above approximation. But it works, using the dominated
convergence theorem.

Using the GNS inequality,
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Using Hélder’s inequality, we can put |Du| into LP, which puts |u\:1 in L¥'. By dimensional

analysis, it must happen that
=1(q-1) a1
< flull g [Dull s -

This completes the proof. O

Now we will upgrade this to every element in the abstract Sobolev space and to situa-
tions where we have a function which is bounded on an abstract domain.

Theorem 1.3. Let d > 2, and assume that 1 < p < d.
(i) For u € WhHP(R?),
[ullze(RY) < C|| Dull oy,

where q = ddfpp.



(ii) Let U be a bounded domain. For u e Wy'*(U),

[ull2a(U) < CllDull o),

where ¢ = ddfpp.

(iii) Let U be a bounded domain with C* boundary OU. Then for u € WLP(U),
[ullLa(U) < CllDullwrew),
where ¢ = dd_—pp.
Proof.
(i) This is by density of C°(R%).
(ii) This is by density, as well.
(iii) This follows from extension and approximation. O

Remark 1.2. In (iii), we need both ||u||zr and ||Du||rr in the extension procedure. Com-
pare this to the case (ii), where no information of u was needed, since “u|gy = 0.” By this
reason, (ii) is called a Poincaré inequality or Friedrich inequality.

1.3 Sobolev inequalities for LP-based spaces with p > d

Next, we investigate: What does ||u||yy1,» tell us when p > d? This will be based on another
way to relate u with its derivative, Du. Start with u € C*°(R?), and write down what we
get by applying the fundamental theorem of calculus:

1
ua) = u(y) = [ = Foulo + sty — ) de

The key idea is to average to take advantage of the fact that we are in multiple dimensions.
Take absolute values and average this in y: Fix r > 0, so
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By the chain rule, this derivative is (y — x) - Du(x + s(y — x)).
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Let pw =y — x, so that p = |y — z|.

1 r 1
=C— / / / p|Du(z + spw)| dsp®™! dw dp
T 0 sa-1 Jo
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Make another change of variables, so we can make = + spw into an actual radius and then
evaluate on of the integrals. We do t = sp

=C d// / \Du x + tw)|ds dw dt
T sd-1 Jo

Simplify the s integral and upper bound ¢ < r:

SC'// |Du(z + tw)| dw dt
0 Jsi-1
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We can summarize this as a lemma:

Lemma 1.2. Let p > d, let d > 2, and let u € C®°(R?). Then

| Dul
‘/ y)|dy < C |d_1dy.

By () |.%' -y
Theorem 1.4. Let p > d with d > 2, and take u € C°(R?). Then
lu(z) — u(y)| < Clo —y|*| Dul| 1o ra),

d

whereazlfp.

Again, we can find the value of o by dimensional analysis: 1 = a + (—1) + % gives
d

azl—p.

Proof. We will use the lemma. The idea is to introduce an auxiliary variable z and take
the average over z on some domain U:

1
’U|/|u() y)|dz < |U|/|u |dz+|U|/|u y)|dz

: [Br(z)]
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Now we just need to evaluate
1
/ [2]@-Dp dz~r O



1.4 Sobolev inequalities for LP-based spaces with p = d

What about when p = d (and d > 2)? In this case, the inequality ||ulzec) < [[ullwr.a()
fails.

Example 1.1. Here is a counterexample to the above inequality when p = d = 2. Take
U = B1(0) C R? and

1
u(x) = loglog <10 + H) .
x
A popular remedy for p = d is to think about bounded mean oscillation:

Definition 1.1. v € C* has bounded mean oscillation (BMO) if

1 1
[ullBMO = sup = u(y) — / u| dy < .
reR! |Br(2)] JB,(2) |Br(2)] JB, ()
>

We can check that ||u||pmo < C||Dul|r«. We will discuss this next time and also intro-
duce the concept of Holder space to recontextualize the theorem we have just proven.
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