Mathematics 222B Lecture 5 Notes

Daniel Raban

February 1, 2022

1 Sobolev Inequalities

1.1 The Gagliardo-Nirenberg-Sobolev inequality

We have been discussing Sobolev inequalities. Last time, we stated the following theorem.
Theorem 1.1 (Gagliardo-Nirenberg-Sobolev inequality). Let $d \geq 2$. For $u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have

$$
\|u\|_{L^{\frac{d}{d-1}}}\left(\mathbb{R}^{d}\right) \leq\|D u\|_{L^{1}\left(\mathbb{R}^{d}\right)} .
$$

To approach this, we proved a lemma:
Lemma 1.1 (Loomis-Whitney inequality). Let $d \geq 2$. For $j=1, \ldots, d$, suppose $f_{j}=$ $f_{j}\left(x^{1}, \ldots, \widehat{x^{j}}, \ldots, x^{d}\right)$. Then

$$
\left\|\prod_{j=1}^{d} f_{j}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq \prod_{j=1}^{d}\left\|f_{j}\right\|_{L^{d-1}\left(\mathbb{R}^{d-1}\right)}
$$

This answers the geometric question of controlling the measure of a set in \mathbb{R}^{d} using the measure of its projections, by applying the lemma to $f_{j}=\mathbb{1}_{\pi_{x j}(E)}$. Now let's prove the GNS inequality.

Proof. Observe that if we take a point $x \in \mathbb{R}^{d}$, then we can write

$$
u(x)=\int_{-\infty}^{x^{j}} \partial_{x^{j}} u\left(x^{1}, \ldots, x^{j-1}, y, x^{j+1}, \ldots, x^{d}\right) d y
$$

using the fundamental theorem of calculus. Here, we use the compact support assumption to be sure this converges. This means that

$$
|u(x)| \leq \int_{-\infty}^{x^{j}}\left|\partial_{x^{j}} u\left(x^{1}, \ldots, x^{j-1}, y, x^{j+1}, \ldots, x^{d}\right)\right| d y
$$

We can upper bound this by replacing x^{j} by ∞ and $\partial_{x^{j}}$ by D :

$$
|u(x)| \leq \underbrace{\int_{-\infty}^{\infty}\left|D u\left(x^{1}, \ldots, x^{j-1}, y, x^{j+1}, \ldots, x^{d}\right)\right| d y}_{\tilde{f}_{j}\left(x^{1}, \ldots, \widehat{x}^{j}, \ldots, x^{d}\right)}
$$

This means that we have

$$
|u(x)| \leq\left(\prod_{j=1}^{d} \tilde{f}_{j}\right)
$$

which we can write as

$$
|u(x)|^{\frac{d}{d-1}} \leq\left(\prod_{j=1}^{d} \widetilde{f}_{j}^{\frac{1}{d-1}}\right)
$$

Using the Loomis-Whitney inequality,

$$
\begin{aligned}
\|u\|_{L^{\frac{d}{d-1}}}^{\frac{d}{d-1}} & =\int|u|^{\frac{d}{d-1}} d x \\
& \leq \int \prod_{j=1}^{d} f_{j} d x \\
& \leq \prod_{j=1}^{d}\left\|f_{j}\right\|_{L^{d-1}} \\
& =\prod_{j=1}^{d}\left(\int\left|f_{j}\right|^{d-1} d x^{1} \cdots \widehat{d x^{j}} \cdots d x^{d}\right)^{\frac{1}{d-1}}
\end{aligned}
$$

Observe that $\left|f_{j}\right|^{d-1}=\int_{-\infty}^{\infty}\left|D u\left(x^{1}, \ldots, x^{j}, \ldots, x^{d}\right)\right| d x^{j}=\int|D u| d x$, so

$$
\leq\|D u\|_{L^{1}}^{\frac{d}{d-1}} .
$$

Remark 1.1. GNS is the functional counterpart of the isoperimetric inequality. Given a function, we can make a layer cake decomposition in the y axis and apply the isoperimetric inequality to each part. This is useful for functions on manifolds where we have some geometric information.

1.2 Sobolev inequalities for L^{p}-based spaces with $p<d$

Now we will upgrade this to the case where we have other L^{p} spaces on the right hand side.

Theorem 1.2 (Sobolev inequalities for L^{p}-based spaces). Let $d \geq 2$, and assume that $1<p<d$. For $u \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have

$$
\|u\|_{L^{q}}\left(\mathbb{R}^{d}\right) \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{d}\right)},
$$

where $q=\frac{d p}{d-p}$.
What is q ? We do dimensional analysis to figure out the exponent. On the left hand side, we have $[x]^{d / q}$, and on the right hand side, we have $[x]^{-1+d / p}$. If we solve for q, we get $q=\frac{d p}{d-p}$. This also gives us the restriction that $p<d$.

Proof. Take $v=|u|^{\widetilde{q}}$, where $\widetilde{q}=\frac{q}{d /(d-1)}$. Its derivative is $|D v|=q|u|^{q-1}|D v|$. This can be justified using approximation: approximate $|x|$ by $\left(\varepsilon^{2}+x^{2}\right)^{1 / 2} \mathrm{v}$ and let $\varepsilon \rightarrow 0$. Then

$$
\int|u|^{\widetilde{q}} d x=\int|v|^{\frac{d}{d-1}} d x
$$

Using the GNS inequality,

$$
\leq\left(\int|D v| d x\right)^{\frac{d-1}{d}}
$$

It is at this point that we need the above approximation. But it works, using the dominated convergence theorem.

$$
=\left(\int|u|^{\widetilde{q}-1}|D u| d x\right)^{\frac{d-1}{d}}
$$

Using Hölder's inequality, we can put $|D u|$ into L^{p}, which puts $|u|^{\tilde{-} 1}$ in $L^{p^{\prime}}$. By dimensional analysis, it must happen that

$$
\leq\|u\|_{L^{\frac{d-1}{d}}}^{\frac{d-1}{d}(q-1)}\|D u\|_{L^{p}}^{\frac{d-1}{d}} .
$$

This completes the proof.
Now we will upgrade this to every element in the abstract Sobolev space and to situations where we have a function which is bounded on an abstract domain.

Theorem 1.3. Let $d \geq 2$, and assume that $1 \leq p<d$.
(i) For $u \in W^{1, p}\left(\mathbb{R}^{d}\right)$,

$$
\|u\|_{L^{q}}\left(\mathbb{R}^{d}\right) \leq C\|D u\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

where $q=\frac{d p}{d-p}$.
(ii) Let U be a bounded domain. For $u \in W_{0}^{1, p}(U)$,

$$
\|u\|_{L^{q}}(U) \leq C\|D u\|_{L^{p}(U)},
$$

where $q=\frac{d p}{d-p}$.
(iii) Let U be a bounded domain with C^{1} boundary ∂U. Then for $u \in W^{1, p}(U)$,

$$
\|u\|_{L^{q}}(U) \leq C\|D u\|_{W^{1, p}(U)},
$$

where $q=\frac{d p}{d-p}$.
Proof.
(i) This is by density of $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
(ii) This is by density, as well.
(iii) This follows from extension and approximation.

Remark 1.2. In (iii), we need both $\|u\|_{L^{p}}$ and $\|D u\|_{L^{p}}$ in the extension procedure. Compare this to the case (ii), where no information of u was needed, since " $\left.u\right|_{\partial U}=0$." By this reason, (ii) is called a Poincaré inequality or Friedrich inequality.

1.3 Sobolev inequalities for L^{p}-based spaces with $p>d$

Next, we investigate: What does $\|u\|_{W^{1, p}}$ tell us when $p \geq d$? This will be based on another way to relate u with its derivative, $D u$. Start with $u \in C^{\infty}\left(\mathbb{R}^{d}\right)$, and write down what we get by applying the fundamental theorem of calculus:

$$
u(x)-u(y)=\int_{0}^{1}=\frac{d}{d s} u(x+s(y-x)) d x .
$$

The key idea is to average to take advantage of the fact that we are in multiple dimensions. Take absolute values and average this in y : Fix $r>0$, so

$$
\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}}|u(x)-u(y)| d y \leq \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} \int_{0}^{1}\left|\frac{d}{d s} u(x+s(y-x))\right| d x d y
$$

By the chain rule, this derivative is $(y-x) \cdot D u(x+s(y-x))$.

$$
\leq C \frac{1}{r^{d}} \int_{B_{r}(x)} \int_{0}^{1}|x-y||D u(x+s(y-x))| d x d y
$$

Let $\rho \omega=y-x$, so that $\rho=|y-x|$.

$$
=C \frac{1}{r^{d}} \int_{0}^{r} \int_{\mathbb{S}^{d-1}} \int_{0}^{1} \rho|D u(x+s \rho \omega)| d s \rho^{d-1} d \omega d \rho
$$

Make another change of variables, so we can make $x+s \rho \omega$ into an actual radius and then evaluate on of the integrals. We do $t=s \rho$

$$
=C \frac{1}{r^{d}} \int_{0}^{r} \int_{\mathbb{S}^{d-1}} \int_{0}^{1} \frac{t^{d}}{s^{d}} \frac{1}{s}|D u(x+t \omega)| d s d \omega d t
$$

Simplify the s integral and upper bound $t \leq r$:

$$
\begin{aligned}
& \leq C \int_{0}^{r} \int_{\mathbb{S}^{d-1}}|D u(x+t \omega)| d \omega d t \\
& =C \int_{B_{r}(x)} \frac{|D u|}{|x-y|^{d-1}} d y .
\end{aligned}
$$

We can summarize this as a lemma:
Lemma 1.2. Let $p>d$, let $d \geq 2$, and let $u \in C^{\infty}\left(\mathbb{R}^{d}\right)$. Then

$$
\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}}|u(x)-u(y)| d y \leq C \int_{B_{r}(x)} \frac{|D u|}{|x-y|^{d-1}} d y .
$$

Theorem 1.4. Let $p>d$ with $d \geq 2$, and take $u \in C^{\infty}\left(\mathbb{R}^{d}\right)$. Then

$$
|u(x)-u(y)| \leq C|x-y|^{\alpha}\|D u\|_{L^{p}\left(\mathbb{R}^{d}\right)},
$$

where $\alpha=1-\frac{d}{p}$.
Again, we can find the value of α by dimensional analysis: $1=\alpha+(-1)+\frac{d}{p}$ gives $\alpha=1-\frac{d}{p}$.
Proof. We will use the lemma. The idea is to introduce an auxiliary variable z and take the average over z on some domain U :

$$
\frac{1}{|U|} \int_{U}|u(x)-u(y)| d z \leq \frac{1}{|U|} \int_{U}|u(x)-u(z)| d z+\frac{1}{|U|} \int_{U}|u(y)-u(y)| d z
$$

Since $\frac{\left|B_{r}(x)\right|}{|U|} \simeq 1$,

$$
\begin{aligned}
& \lesssim \frac{\left|B_{r}(x)\right|}{|U|} \int_{B_{r}(x)}|u(x)-u(z)| d z+\frac{\left|B_{r}(y)\right|}{|U|} \int_{B_{r}(y)}|u(y)-u(z)| d z \\
& \lesssim \int_{B_{r}(x)} \frac{|D u|}{|x-z|^{d-1}} d z+\int_{B_{r}(y)} \frac{|D u|}{|y-z|^{d-1}} d z \\
& \lesssim\|D u\|_{L^{p}}\left\|\frac{1}{|x-z|^{d-1}}\right\|_{L^{p^{\prime}\left(B_{r}(x)\right)}}+\|D u\|_{L^{p}}\left\|\frac{1}{|y-z|^{d-1}}\right\|_{L^{p^{\prime}\left(B_{r}(y)\right)}}
\end{aligned}
$$

Now we just need to evaluate

$$
\int_{B_{r}(0)} \frac{1}{|z|^{(d-1) p^{\prime}}} d z \simeq r^{\alpha}
$$

1.4 Sobolev inequalities for L^{p}-based spaces with $p=d$

What about when $p=d$ (and $d \geq 2)$? In this case, the inequality $\|u\|_{L^{\infty}(U)} \leq\|u\|_{W^{1, d}(U)}$ fails.

Example 1.1. Here is a counterexample to the above inequality when $p=d=2$. Take $U=B_{1}(0) \subseteq \mathbb{R}^{2}$ and

$$
u(x)=\log \log \left(10+\frac{1}{|x|}\right)
$$

A popular remedy for $p=d$ is to think about bounded mean oscillation:
Definition 1.1. $u \in C^{\infty}$ has bounded mean oscillation (BMO) if

$$
\|u\|_{\mathrm{BMO}}=\sup _{\substack{x \in \mathbb{R}^{d} \\ r>0}} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}\left|u(y)-\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} u\right| d y<\infty .
$$

We can check that $\|u\|_{\text {BMO }} \leq C\|D u\|_{L^{d}}$. We will discuss this next time and also introduce the concept of Hölder space to recontextualize the theorem we have just proven.

