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1 Sobolev Inequalities

1.1 The Gagliardo-Nirenberg-Sobolev inequality

We have been discussing Sobolev inequalities. Last time, we stated the following theorem.

Theorem 1.1 (Gagliardo-Nirenberg-Sobolev inequality). Let d ≥ 2. For u ∈ C∞c (Rd), we
have

‖u‖
L

d
d−1

(Rd) ≤ ‖Du‖L1(Rd).

To approach this, we proved a lemma:

Lemma 1.1 (Loomis-Whitney inequality). Let d ≥ 2. For j = 1, . . . , d, suppose fj =

fj(x
1, . . . , x̂j , . . . , xd). Then∥∥∥∥∥∥

d∏
j=1

fj

∥∥∥∥∥∥
L1(Rd)

≤
d∏
j=1

‖fj‖Ld−1(Rd−1) .

This answers the geometric question of controlling the measure of a set in Rd using the
measure of its projections, by applying the lemma to fj = 1π

xj
(E). Now let’s prove the

GNS inequality.

Proof. Observe that if we take a point x ∈ Rd, then we can write

u(x) =

∫ xj

−∞
∂xju(x1, . . . , xj−1, y, xj+1, . . . , xd) dy,

using the fundamental theorem of calculus. Here, we use the compact support assumption
to be sure this converges. This means that

|u(x)| ≤
∫ xj

−∞
|∂xju(x1, . . . , xj−1, y, xj+1, . . . , xd)|dy.
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We can upper bound this by replacing xj by ∞ and ∂xj by D:

|u(x)| ≤
∫ ∞
−∞
|Du(x1, . . . , xj−1, y, xj+1, . . . , xd)|dy︸ ︷︷ ︸

f̃j(x1,...,x̂j ,...,xd)

.

This means that we have

|u(x)| ≤

 d∏
j=1

f̃j

 ,

which we can write as

|u(x)|
d

d−1 ≤

 d∏
j=1

f̃
1

d−1

j

 ,

Using the Loomis-Whitney inequality,

‖u‖
d

d−1

L
d

d−1

=

∫
|u|

d
d−1 dx

≤
∫ d∏

j=1

fj dx

≤
d∏
j=1

‖fj‖Ld−1

=

d∏
j=1

(∫
|fj |d−1 dx1 · · · d̂xj · · · dxd

) 1
d−1

Observe that |fj |d−1 =
∫∞
−∞ |Du(x1, . . . , xj , . . . , xd)| dxj =

∫
|Du| dx, so

≤ ‖Du‖
d

d−1

L1 .

Remark 1.1. GNS is the functional counterpart of the isoperimetric inequality. Given a
function, we can make a layer cake decomposition in the y axis and apply the isoperimetric
inequality to each part. This is useful for functions on manifolds where we have some
geometric information.

1.2 Sobolev inequalities for Lp-based spaces with p < d

Now we will upgrade this to the case where we have other Lp spaces on the right hand
side.
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Theorem 1.2 (Sobolev inequalities for Lp-based spaces). Let d ≥ 2, and assume that
1 < p < d. For u ∈ C∞c (Rd), we have

‖u‖Lq(Rd) ≤ C‖Du‖Lp(Rd),

where q = dp
d−p .

What is q? We do dimensional analysis to figure out the exponent. On the left hand
side, we have [x]d/q, and on the right hand side, we have [x]−1+d/p. If we solve for q, we
get q = dp

d−p . This also gives us the restriction that p < d.

Proof. Take v = |u|q̃, where q̃ = q
d/(d−1) . Its derivative is |Dv| = q|u|q−1|Dv|. This can be

justified using approximation: approximate |x| by (ε2 + x2)1/2v and let ε→ 0. Then∫
|u|q̃ dx =

∫
|v|

d
d−1 dx

Using the GNS inequality,

≤
(∫
|Dv| dx

) d−1
d

.

It is at this point that we need the above approximation. But it works, using the dominated
convergence theorem.

=

(∫
|u|q̃−1|Du| dx

) d−1
d

Using Hölder’s inequality, we can put |Du| into Lp, which puts |u|−̃1 in Lp
′
. By dimensional

analysis, it must happen that

≤ ‖u‖
d−1
d

(q−1)
Lq ‖Du‖

d−1
d

Lp .

This completes the proof.

Now we will upgrade this to every element in the abstract Sobolev space and to situa-
tions where we have a function which is bounded on an abstract domain.

Theorem 1.3. Let d ≥ 2, and assume that 1 ≤ p < d.

(i) For u ∈W 1,p(Rd),
‖u‖Lq(Rd) ≤ C‖Du‖Lp(Rd),

where q = dp
d−p .
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(ii) Let U be a bounded domain. For u ∈W 1,p
0 (U),

‖u‖Lq(U) ≤ C‖Du‖Lp(U),

where q = dp
d−p .

(iii) Let U be a bounded domain with C1 boundary ∂U . Then for u ∈W 1,p(U),

‖u‖Lq(U) ≤ C‖Du‖W 1,p(U),

where q = dp
d−p .

Proof.

(i) This is by density of C∞c (Rd).

(ii) This is by density, as well.

(iii) This follows from extension and approximation.

Remark 1.2. In (iii), we need both ‖u‖Lp and ‖Du‖Lp in the extension procedure. Com-
pare this to the case (ii), where no information of u was needed, since “u|∂U = 0.” By this
reason, (ii) is called a Poincaré inequality or Friedrich inequality.

1.3 Sobolev inequalities for Lp-based spaces with p > d

Next, we investigate: What does ‖u‖W 1,p tell us when p ≥ d? This will be based on another
way to relate u with its derivative, Du. Start with u ∈ C∞(Rd), and write down what we
get by applying the fundamental theorem of calculus:

u(x)− u(y) =

∫ 1

0
=

d

ds
u(x+ s(y − x)) dx.

The key idea is to average to take advantage of the fact that we are in multiple dimensions.
Take absolute values and average this in y: Fix r > 0, so

1

|Br(x)|

∫
Br

|u(x)− u(y)| dy ≤ 1

|Br(x)|

∫
Br(x)

∫ 1

0

∣∣∣∣ ddsu(x+ s(y − x))

∣∣∣∣ dx dy
By the chain rule, this derivative is (y − x) ·Du(x+ s(y − x)).

≤ C 1

rd

∫
Br(x)

∫ 1

0
|x− y||Du(x+ s(y − x))| dx dy

Let ρω = y − x, so that ρ = |y − x|.

= C
1

rd

∫ r

0

∫
Sd−1

∫ 1

0
ρ|Du(x+ sρω)| dsρd−1 dω dρ
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Make another change of variables, so we can make x+ sρω into an actual radius and then
evaluate on of the integrals. We do t = sρ

= C
1

rd

∫ r

0

∫
Sd−1

∫ 1

0

td

sd
1

s
|Du(x+ tω)| ds dω dt

Simplify the s integral and upper bound t ≤ r:

≤ C
∫ r

0

∫
Sd−1

|Du(x+ tω)| dω dt

= C

∫
Br(x)

|Du|
|x− y|d−1

dy.

We can summarize this as a lemma:

Lemma 1.2. Let p > d, let d ≥ 2, and let u ∈ C∞(Rd). Then

1

|Br(x)|

∫
Br

|u(x)− u(y)| dy ≤ C
∫
Br(x)

|Du|
|x− y|d−1

dy.

Theorem 1.4. Let p > d with d ≥ 2, and take u ∈ C∞(Rd). Then

|u(x)− u(y)| ≤ C|x− y|α‖Du‖Lp(Rd),

where α = 1− d
p .

Again, we can find the value of α by dimensional analysis: 1 = α + (−1) + d
p gives

α = 1− d
p .

Proof. We will use the lemma. The idea is to introduce an auxiliary variable z and take
the average over z on some domain U :

1

|U |

∫
U
|u(x)− u(y)| dz ≤ 1

|U |

∫
U
|u(x)− u(z)| dz +

1

|U |

∫
U
|u(y)− u(y)| dz

Since |Br(x)|
|U | ' 1,

.
|Br(x)|
|U |

∫
Br(x)

|u(x)− u(z)| dz +
|Br(y)|
|U |

∫
Br(y)

|u(y)− u(z)| dz

.
∫
Br(x)

|Du|
|x− z|d−1

dz +

∫
Br(y)

|Du|
|y − z|d−1

dz

. ‖Du‖Lp

∥∥∥∥ 1

|x− z|d−1

∥∥∥∥
Lp′ (Br(x))

+ ‖Du‖Lp

∥∥∥∥ 1

|y − z|d−1

∥∥∥∥
Lp′ (Br(y))

Now we just need to evaluate ∫
Br(0)

1

|z|(d−1)p′
dz ' rα.

5



1.4 Sobolev inequalities for Lp-based spaces with p = d

What about when p = d (and d ≥ 2)? In this case, the inequality ‖u‖L∞(U) ≤ ‖u‖W 1,d(U)

fails.

Example 1.1. Here is a counterexample to the above inequality when p = d = 2. Take
U = B1(0) ⊆ R2 and

u(x) = log log

(
10 +

1

|x|

)
.

A popular remedy for p = d is to think about bounded mean oscillation:

Definition 1.1. u ∈ C∞ has bounded mean oscillation (BMO) if

‖u‖BMO = sup
x∈Rd

r>0

1

|Br(x)|

∫
Br(x)

∣∣∣∣∣u(y)− 1

|Br(x)|

∫
Br(x)

u

∣∣∣∣∣ dy <∞.
We can check that ‖u‖BMO ≤ C‖Du‖Ld . We will discuss this next time and also intro-

duce the concept of Hölder space to recontextualize the theorem we have just proven.
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